解题思路:(1)设购进甲种T恤x件,则购进乙种T恤(100一x)件,根据已知列出不等式,求出x的取值,得到进货方案.
(2)根据进价和售价得出每种每件的利润,列出函数关系,求最值得出答案.
(3)据(1)(2)求出答案.
(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.
可得,6195≤35x+70(100一x)≤6299.
解得,20[1/35]≤x≤23.
∵x为解集内的正整数,
∴x=21,22,23.
∴有三种进货方案:
方案一:购进甲种T恤21件,购进乙种T恤79件;
方案二:购进甲种T恤22件,购进乙种T恤78件;
方案三:购进甲种T恤23件,购进乙种T恤77件.
(2)设所获得利润为W元.
W=30x+40(100一x)=-10x+4000.
∵k=-10<0,∴W随x的增大而减小.
∴当x=21时,W=3790.
该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.
(3)甲种T恤购进9件,乙种T恤购进1件.
点评:
本题考点: 一次函数的应用;一元一次不等式组的应用.
考点点评: 此题考查的知识点是一次函数的应用及一元一次不等式组的应用,关键是由已知先列出不等式组求出x的取值,得出方案,然后求最佳方案.