kc(n,k)=k*n!/[k!(n-k)!]=n!/[(k-1)!(n-1-k+1)!] = n*(n-1)!/[(k-1)!(n-1-k+1)!] = nc(n-1,k-1).
c(n,1)+2c(n,2)+3c(n,3)+...+nc(n,n)=n[c(n-1,0)+c(n-1,1)+c(n-1,2)+...+c(n-1,n-1)]
(1+1)^(n-1) = c(n-1,0)+c(n-1,1)+c(n-1,2)+...+c(n-1,n-1) = 2^(n-1),
(1+1)^n = c(n,0) + c(n,1)+...+c(n,n) = 2^n =
= 2*2^(n-1)
c(n,1)+2c(n,2)+3c(n,3)+...+nc(n,n)=n[c(n-1,0)+c(n-1,1)+c(n-1,2)+...+c(n-1,n-1)]
=n*2^(n-1)
=(n/2)2^n
=(n/2)[c(n,0) + c(n,1)+...+c(n,n)]