(3x+4/3x+2) ^6x+7
= [(3x+2+2)/(3x+2)]^(6x+7)
=[1+2/(3x+2)]^(6x+7)
=[1+2/(3x+2)]^[(3x+2)/2*2/3*6+3]
=[1+2/(3x+2)]^[(3x+2)/2*4*[1+2/(3x+2)]^3
所以当x趋近于无穷 时,(3x+4/3x+2) ^6x+7趋近于e^4*1=e^4
所求极限为e^4
(3x+4/3x+2) ^6x+7
= [(3x+2+2)/(3x+2)]^(6x+7)
=[1+2/(3x+2)]^(6x+7)
=[1+2/(3x+2)]^[(3x+2)/2*2/3*6+3]
=[1+2/(3x+2)]^[(3x+2)/2*4*[1+2/(3x+2)]^3
所以当x趋近于无穷 时,(3x+4/3x+2) ^6x+7趋近于e^4*1=e^4
所求极限为e^4