依题可得:f(1)=a1+a2+a3+...+an=n^2
可知{an}是首项a1=1,公差为2的等差数列.
即an=2n-1 (n=1,2,3,...)
所以1/a1a2 1/a2a3 ...1/ana(n+1)=1/1*3 1/3*5 ...1/(2n-1)(2n+1)
= {(1-1/3)+(1/3-1/5)+...+[1/(2n-1)-1/(2n+1)]}*1/2
=[1-1/(2n+1)]*1/2
=n/(2n+1)
注:* 为乘号.
依题可得:f(1)=a1+a2+a3+...+an=n^2
可知{an}是首项a1=1,公差为2的等差数列.
即an=2n-1 (n=1,2,3,...)
所以1/a1a2 1/a2a3 ...1/ana(n+1)=1/1*3 1/3*5 ...1/(2n-1)(2n+1)
= {(1-1/3)+(1/3-1/5)+...+[1/(2n-1)-1/(2n+1)]}*1/2
=[1-1/(2n+1)]*1/2
=n/(2n+1)
注:* 为乘号.