[(x^2+y^2)^2-4x^2y^2]÷(x+y)^2
=[(x^2+y^2)^2-(2xy)^2]÷(x+y)^2
=[(x^2+y^2+2xy)(x^2+y^2-2xy)]÷(x+y)^2,[a²-b²=(a+b)(a-b)]
=[(x+y)^2(x-y)^2]÷(x+y)^2
=(x-y)^2
=(1-3/2)²
=(-1/2)²
=1/4
[(x^2+y^2)^2-4x^2y^2]÷(x+y)^2
=[(x^2+y^2)^2-(2xy)^2]÷(x+y)^2
=[(x^2+y^2+2xy)(x^2+y^2-2xy)]÷(x+y)^2,[a²-b²=(a+b)(a-b)]
=[(x+y)^2(x-y)^2]÷(x+y)^2
=(x-y)^2
=(1-3/2)²
=(-1/2)²
=1/4