∵原方程有两个实数根,∴判别时△=b^2-4ac≥0.
由韦达定理得:x1+x2=-b/a,x1*x2=c/a.
(x1+x2)^2=(-b/a)^2=b^2/a^2.
(x1-x2)^2=(x1+x2)^2-4x1x2.
=b^2/a^2-4c/a.
=(b^2-4ac)/a^2
|x1-x2|^2=(x1-x2)^2.
|x1-x2|=√(b^2-4ac)/a.
∵b^2-4ac≥0,a>0.
∴0<|x1-x2|≤√(b^2-4ac)/a.
∵原方程有两个实数根,∴判别时△=b^2-4ac≥0.
由韦达定理得:x1+x2=-b/a,x1*x2=c/a.
(x1+x2)^2=(-b/a)^2=b^2/a^2.
(x1-x2)^2=(x1+x2)^2-4x1x2.
=b^2/a^2-4c/a.
=(b^2-4ac)/a^2
|x1-x2|^2=(x1-x2)^2.
|x1-x2|=√(b^2-4ac)/a.
∵b^2-4ac≥0,a>0.
∴0<|x1-x2|≤√(b^2-4ac)/a.