解题思路:(1)根据正方形的性质得出DC=BC,∠DCB=∠CBN=90°,求出∠CPD=∠DCN=∠CNB,证△DCP≌△CBN,求出CP=BN,证△OBN≌△OCP,推出ON=OP,∠BON=∠COP,求出∠PON=∠COB即可;
(2)同法可证图2时,OP=ON,OP⊥ON,图1中,S四边形OPBN=S△OBN+S△BOP,代入求出即可;图2中,S四边形OBNP=S△POB+S△PBN,代入求出即可.
(1)证明:如图1,
∵四边形ABCD为正方形,
∴OC=OB,DC=BC,∠DCB=∠CBA=90°,∠OCB=∠OBA=45°,∠DOC=90°,DC∥AB,
∵DP⊥CN,
∴∠CMD=∠DOC=90°,
∴∠BCN+∠CPD=90°,∠PCN+∠DCN=90°,
∴∠CPD=∠CNB,
∵DC∥AB,
∴∠DCN=∠CNB=∠CPD,
∵在△DCP和△CBN中
∠DCB=∠CBN
∠CPD=∠BNC
DC=BC,
∴△DCP≌△CBN(AAS),
∴CP=BN,
∵在△OBN和△OCP中
OB=OC
∠OCP=∠OBN
CP=BN,
∴△OBN≌△OCP(SAS),
∴ON=OP,∠BON=∠COP,
∴∠BON+∠BOP=∠COP+∠BOP,
即∠NOP=∠BOC=90°,
∴ON⊥OP,
即ON=OP,ON⊥OP.
(2)∵AB=4,四边形ABCD是正方形,
∴O到BC边的距离是2,
图1中,S四边形OPBN=S△OBN+S△BOP,
=[1/2]×(4-x)×2+[1/2]×x×2,
=4(0<x<4),
图2中,S四边形OBNP=S△POB+S△PBN
=[1/2]×x×2+[1/2]×(x-4)×x
=[1/2]x2-x(x>4),
即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:
y=4(0<x<4)
y=
1
2
点评:
本题考点: 正方形的性质;分段函数;三角形的面积;全等三角形的判定与性质.
考点点评: 本题考查了正方形性质,全等三角形的性质和判定,分段函数等知识点的应用,解(1)小题的关键是能运用性质进行推理,解(2)的关键是求出符合条件的所有情况,本题具有一定的代表性,是一道比较好的题目,注意:证明过程类似.