甲、乙两人同时从A地出发,在直道A、B两地往返跑步,甲每分钟72米,乙每分钟48米,甲乙第二次迎面相遇与甲第二次从后面追

2个回答

  • 解题思路:从题中可知,因为甲和乙的速度之比为72:48=3:2,所以相同的时间内甲的路程和乙的路程比试3:2.如果总路程有5格,第一次迎面相遇时,两人加在一起走了2个全程,总共走10格,那么甲就走了6格,乙走了4格.第二次迎面相遇两人加在一起一共走了4个全程,一共20格.这时甲走了12格,乙走了8格,相遇地点如图所示.

    而当甲第一次追上乙时,要比乙多走10格,所以第一次追上乙时,甲需要走30格才能追上乙,第二次追上乙还需要再走30格,第二次追上乙的地点如图所示,因此甲乙第二次迎面相遇与甲第二次从后面追上乙的两地相距为两格,由此可以求出1格的距离为:80÷2=40米,因为把全程分成了5格,所以可以求出全程的距离.

    80÷2=40(米),

    40×5=200(米);

    答:A、B两地相距200米.

    点评:

    本题考点: 多次相遇问题.

    考点点评: 对于这类题目,不能单纯的根据一般行程应用题的计算方法进行计算,关键是要正确运用转化的思想,理清题里的数量关系,便可迎刃而解.