(1)3cosα+4cosβ=-5cosγ……①
3sinα+4sinβ=-5sinγ……②
①的平方加②的平方得
25+24(cosαcosβ+sinαsinβ)=25
即cosαcosβ+sinαsinβ=0
则(向量a)•(向量b)=cosαcosβ+sinαsinβ=0
所以向量a⊥b
(2)同样可得
cosαcosγ+sinαsinγ=-3/5
cosβcosγ+sinβsinγ=-4/5
a•(a+b+c)=a•a+a•b+a•c
=(cosαcosα+sinαsinα)+0+(cosαcosγ+sinαsinγ)
=1-3/5=2/5
另一方面
a•(a+b+c)=|a||a+b+c|cosθ
=[√(cosαcosα+sinαsinα)]{√[(cosα+cosβ+cosγ)^2+(sinα+sinβ+sinγ)^2]}cosθ
={√[3+2(cosαcosβ+sinαsinβ+cosβcosγ+sinβsinγ+cosαcosγ+sinαsinγ)]}cosθ
={√[3+2(0-4/5-3/5)]}cosθ
=[1/(√5)]cosθ
即cosθ=2√5/5