y=(1-sinx)/(2-cosx)>0
y=sina/cosa>0
y^2=(sina/cosa)^2=(1-cos^2a)/cos^2a
cos^2a=1/(1+y^2)
1/cosa=±√(1+y^2)
2y-ycosx=1-sinx
2y-1=ycosx-sinx=(sina/cosa)*cosx-sinx=sin(a-x)/cosa
2y-1=[±√(1+y^2)]*sin(a-x)
sin(a-x)=(2y-1)/[±√(1+y^2)]
-1≤(2y-1)/√(1+y^2)≤1
0≤y≤4/3