过G作GP⊥与AD于点P
可知PG=x.
由△FHD与△EAD相似
得DF/DH=DE/AD
因为DH=1/2DE
整理得DF=DE²/8
勾股定理得DE=x²+4²=x²+16
DF=x²/8+2
GC=x²/8+2+x
∴四边形FDGC的面积=4×½(x²/8+2+x²/8+2-x)=x²/2+2x+8
S四边形AFGB=16-(x²/2-2x+8)=-x²/2+2x+8
对称轴为x=2
由抛物线图像和题可知,x越靠近2越大,所以x=5/2时,y最大等于79/8
过G作GP⊥与AD于点P
可知PG=x.
由△FHD与△EAD相似
得DF/DH=DE/AD
因为DH=1/2DE
整理得DF=DE²/8
勾股定理得DE=x²+4²=x²+16
DF=x²/8+2
GC=x²/8+2+x
∴四边形FDGC的面积=4×½(x²/8+2+x²/8+2-x)=x²/2+2x+8
S四边形AFGB=16-(x²/2-2x+8)=-x²/2+2x+8
对称轴为x=2
由抛物线图像和题可知,x越靠近2越大,所以x=5/2时,y最大等于79/8