特征方程:
rr+3r+2=0
得特征值:r1=-1,r2=-2
设特解y*=Ae^x
代入原方程:
Ae^x+3Ae^x+2Ae^x=6e^x
得A=1、
所以特解为y*=e^x
所以通解为y=c1e^(-x)+c2e^(-2x)+e^x