解题思路:(1)已知了抛物线的顶点坐标,可将其解析式设为顶点坐标式,然后将原点坐标代入上式,即可求得待定系数的值,从而确定该抛物线的解析式.
(2)由于△MON和△AOB同底不等高,因此它们的面积比等于高的比,即M点的纵坐标的绝对值是A点纵坐标绝对值的3倍,由于A是抛物线顶点,因此点M必在x轴下方,将其纵坐标代入抛物线的解析式中,即可确定M点的坐标.
(1)由题意,可设抛物线的解析式为y=a(x-2)2+1,(2分)
∵抛物线过原点,
∴a(0-2)2+1=0,a=-[1/4];(2分)
∴抛物线的解析式为y=-[1/4](x-2)2+1=-[1/4]x2+x.(1分)
(2)△AOB和所求△MOB同底不等高,且S△MOB=3S△AOB,
∴△MOB的高是△AOB高的3倍,
即M点的纵坐标是-3,(3分)
∴-3=-[1/4]x2+x,
即x2-4x-12=0,(1分)
解之,得x1=6,x2=-2,(2分)
∴满足条件的点有两个:M1(6,-3),M2(-2,-3).(1分)
点评:
本题考点: 二次函数综合题.
考点点评: 此题主要考查了二次函数解析式的确定、图形面积的求法、函数图象上点的坐标意义等知识,难度不大,能够将图形的面积比转化为M点的纵坐标是解决(2)题的关键.