y'(0)意思是先求出y',然后再代入x=0 用 y=f(x)来说明 y'(0)意为先求出f'(x).令x=0则得f'(0)
e^y+xy=1 则 e^y=1-xy 两边对x求导
e^y*y'=(xy)'=y+xy'
则 y'=y/(e^y-x);
当x=0时.代入e^y+xy=1 求出y=0
则y'(0)=y/(e^y-x)|(x=0)
=0/(1-0)
=0
y'(0)意思是先求出y',然后再代入x=0 用 y=f(x)来说明 y'(0)意为先求出f'(x).令x=0则得f'(0)
e^y+xy=1 则 e^y=1-xy 两边对x求导
e^y*y'=(xy)'=y+xy'
则 y'=y/(e^y-x);
当x=0时.代入e^y+xy=1 求出y=0
则y'(0)=y/(e^y-x)|(x=0)
=0/(1-0)
=0