系数矩阵A=
1 1 0 -3 -1
1 -1 2 -1 0
4 -2 6 3 -4
2 4 -2 4 -7
r4-2r1,r3-4r2,r2-r1
1 1 0 -3 -1
0 -2 2 2 1
0 2 -2 7 -4
0 2 -2 10 -5
r3+r2,r3+r2
1 1 0 -3 -1
0 -2 2 2 1
0 0 0 9 -3
0 0 0 12 -4
r3*(-1/3),r1+r3,r2-r3,r4-4r3
1 1 0 -6 0
0 -2 2 5 0
0 0 0 -3 1
0 0 0 0 0
r2*(1/2)
1 1 0 -6 0
0 -1 1 5/2 0
0 0 0 -3 1
0 0 0 0 0
a1=(-1,1,1,0,0)^T,a2=(6,0,-5/2,1,3)^T 是基础解系
通解为 c1a1+c2a2, c1,c2为任意常数.