求极限 u→1时 lim(u^n-1)/(u-1)
1个回答
lim(u^n-1)/(u-1)u→1时
分子分母同时趋向于0 适用罗比塔法则
=lim(u^n-1)'/(u-1)'
=lim[nu^(n-1)]u→1时
=n
相关问题
利用重要极限lim(1+u)^1/u=e 1.lim (cos2x)^(3/x^2)
求下面式子的极限 lim(1-u/N)^N N趋于无穷大. 详细步骤.
u1=1;un=2u(n-1) 1/1 u(n-1),求数列通项.
lim[cos(u/4n)+cos(3u/4n)+.+cos(2n-1)u/4n]/n n趋向无穷
lim[cos(u/4n)+cos(3u/4n)+.+cos(2n-1)u/4n]/n n趋向无穷
U(下标2n-1)和U(下标2n)的极限都是A,证明U(下标n)的极限也是A
设u=∑(i=1到n)1/√(n^2+i),求n趋向无穷时u的值
设f(u)在u=0的领域内连续,且lim(n趋向于0)f(u)/u=A,求lim(x趋向于0)d/dx∫【0,1】f(t
书上说理想变压器是 U1/U2=N1/N2 (U电压′N线圈匝数)I1U1=I2U2 (I电流)I1/I2=U2/U1=
设X~N(u,1),求P(u-3