(1)∵等差数列{a[n]},公差大于零,a[2]、a[5]是方程x^2-12x+27=0的两根
∴a[2]=3=a[1]+d,a[5]=9=a[1]+4d
解得:a[1]=1,d=2
∴a[n]=1+2(n-1)=2n-1
∵数列{b[n]}的前n项和为S[n],且S[n]=1-b[n]/2
∴S[n+1]=1-b[n+1]/2
将上面两式相减,得:
b[n+1]=b[n]/2-b[n+1]/2
即:b[n+1]=b[n]/3
∵b[1]=S[1]=1-b[1]/2
∴b[1]=2/3
∴{b[n]}是首项为2/3,公比是1/3的等比数列
即:b[n]=(2/3)(1/3)^(n-1)=2/3^n
(2)∵c[n]=a[n]b[n] (n=1、2、3、.)
∴c[n]=(4n-2)/3^n
∵c[n]-c[n+1]
=(4n-2)/3^n-(4n+2)/3^(n+1)
=3(4n-2)/3^(n+1)-(4n+2)/3^(n+1)
=[3(4n-2)-(4n+2)]/3^(n+1)
=(12n-6-4n-2)/3^(n+1)
=(8n-8)/3^(n+1)
≥0 (等号仅在n=1时成立)
∴c[n]≥c[n+1] (等号仅在n=1时成立)