y=1/2*(cos2x+1)/2+√3/2*(2sinxcosx)/2+1
=1/4cos2x+1/4+√3/4*(sin2x)+1
=1/4cos2x+√3/4*sin2x+
=1/2(1/2cos2x++√3/2sin2x)+1
=1/2sin(2x+π/6)+1
当y取最大值时sin(2xπ/6)=1即2x+π/6=π/2加减2kπ,即x=π/6加减kπ
集合是{x|x=π/6加减kπ,k属于Z}
y=1/2*(cos2x+1)/2+√3/2*(2sinxcosx)/2+1
=1/4cos2x+1/4+√3/4*(sin2x)+1
=1/4cos2x+√3/4*sin2x+
=1/2(1/2cos2x++√3/2sin2x)+1
=1/2sin(2x+π/6)+1
当y取最大值时sin(2xπ/6)=1即2x+π/6=π/2加减2kπ,即x=π/6加减kπ
集合是{x|x=π/6加减kπ,k属于Z}