n=2n/2^n
Sn=b1+b2+b3+.+b(n-1)+bn
=2·1/2+2x2·1/2²+2x3·1/2³+.+2n·1/2^n .①
1/2·Sn= 2·1/2²+2x2·1/2³+.+2(n-1)·1/2^n +2n·1/2^(n+1).②
①-②得:1/2·Sn=2(1/2+1/2²+1/2³+.+1/2^n)-2n·1/2^(n+1)
=2·1/2(1-1/2^n)/(1-1/2)-2n·1/2^(n+1)
∴sn=[2^(n+1)-n-2]/2^(n-1)
n=2n/2^n
Sn=b1+b2+b3+.+b(n-1)+bn
=2·1/2+2x2·1/2²+2x3·1/2³+.+2n·1/2^n .①
1/2·Sn= 2·1/2²+2x2·1/2³+.+2(n-1)·1/2^n +2n·1/2^(n+1).②
①-②得:1/2·Sn=2(1/2+1/2²+1/2³+.+1/2^n)-2n·1/2^(n+1)
=2·1/2(1-1/2^n)/(1-1/2)-2n·1/2^(n+1)
∴sn=[2^(n+1)-n-2]/2^(n-1)