圆锥曲线问题已知椭圆C:x²/a² +y²/b²=1(a>b>0)的离心率为√6

1个回答

  • c/a=√6/3,b^2=a^2-c^2=1/3a^2

    ∴椭圆C:x²/a² +3y²/a²=1

    x^2+3y^2=a²

    1

    AB:x=y+c代入 x^2+3y^2=a²

    (y+c)^2+3y^2=a^2

    4y^2+2cy+c^2-a^2=0

    设A(x1,y1),B(x2,y2).N(x0,y0)

    2y0=y1+y2=-c/2,y1y2=(c^2-a^2)/4

    y0=-c/4,x0=3/4c

    KoN=y0/x0=-1/3

    2

    M(x,y)

    OM=mOA+nOB

    =(mx1+nx2,my1+ny2)

    ∴(mx1+nx2)^2+3(my1+ny2)^2-a²=0

    ∴m^2(x1²+3y1²)+n^2(x2²+3y^2)+2mnx1x2+6mny1y2-a^2=0

    m^2a^2 +n^2a^2+2mn(x1x2+3y1y2)-a^2=0

    3y1y2=-3a^2/4,

    x1x2=(y1+c)(y2+c)=y1y2+c(y1+y2)+c^2

    ∴x1x2+3y1y2=4y1y2+c(y1+y2)+1

    = 4(c^2-a^2)/4+(-c^2/4)+c^2

    =-a^2/3-c^2/6+c^2=0

    ∴ m^2a^2 +n^2a^2=a^2

    ∴m²+n²=1,m=cosθ,n=sinθ

    即总存在角θ∈R使等式:

    向量OM=cosθ向量OA+sinθ向量OB成立