请见下图
线性代数矩阵题目~已知A,B为三阶方阵,且满足2A^(-1)B=B-4I,证明A-2I可逆.其中那个A^(-1)表示A的
1个回答
相关问题
-
线性代数:证明可逆的矩阵?已知n阶方阵A、B、A+B均可逆,试证明A-1+B-1也可逆.
-
线性代数1.设A,B均为n阶矩阵,且A=1/2(B+I),证明:A^2=A,当且仅当B^2=I.2.设有矩阵A=(-1
-
线性代数 矩阵证明已知AB=A+B,证:1.(A-I)可逆;2.AB=BA .
-
线性代数的题目 已知矩阵A=| 1 1 -1 |,B为三阶矩阵,且满足A^2+3B=AB+9I,求矩阵B.
-
线性代数问题:A、B为n阶方阵A^3=B^3,A^2*B=B^2*A,且A^2+B^2可逆,证明A=B
-
线性代数问题A、B都为3阶方阵,且 AB=4A+2B,(1)证明:A-2E可逆(2)若 B = [1 -2 0 ] ,求
-
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.
-
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.
-
线性代数可逆问题设A、B、C、D均为n阶方阵,证明 (1)分块矩阵P可逆的充分必要条件是A+B和A-B都可逆 (2)若A
-
大学线性代数1题方阵A满足a2-2a+4I=0证明a+I和a-3I都可逆,并求其逆矩阵.