在①中,反例:f(x)=
(1
2
)x,1≤x<3
2,x=3
在[1,3]上满足性质P,
但f(x)在[1,3]上不是连续函数,故①不成立;
在②中,反例:f(x)=-x在[1,3]上满足性质P,但f(x2)=-x2在[1,
3
]上不满足性质P,
故②不成立;
在③中:在[1,3]上,f(2)=f(
x+(4-x)
2
)≤
1
2
[f(x)+f(4-x)],
∴
f(x)+f(4-x)≥2
f(x)≤f(x)max=f(2)=1
f(4-x)≤f(x)max=f(2)=1
,
故f(x)=1,
∴对任意的x1,x2∈[1,3],f(x)=1,
故③成立;
在④中,对任意x1,x2,x3,x4∈[1,3],
有f(
x1+x2+x3+x4
4
)=f(
1
2
(x1+x2)+
1
2
(x3+x4)
2
)
≤
1
2
[f(
x1+x2
2
)+f(
x3+x4
2
)]
≤
1
2
[
1
2
(f(x1 )+f(x2))+
1
2
(f(x3)+f(x4))]
=
1
4
[f(x1)+f(x2)+f(x3)+f(x4)],
∴f(
x1+x2+x3+x4
4
) ≤
1
4
[f(x1)+f(x2)+f(x3)+f(x4)],
故④成立.
故选③④