(2010•上海二模)已知数列{an}满足a1=a,a2=2,Sn是数列的前n项和,且Sn=n(an+3a1)2(n∈N

1个回答

  • 解题思路:(1)由题设条件可知

    S

    1

    a

    1

    +3

    a

    1

    2

    a

    1

    =2

    a

    1

    ,即

    a

    1

    =0

    .由此能够解得a=0.

    (2)由题意可知,

    S

    n

    n

    a

    n

    2

    ,2

    S

    n

    =n

    a

    n

    (n∈

    N

    *

    )

    .所以2Sn-1=(n-1)an-1(n≥2).由此可知数列{an}的通项公式an=2(n-1)(n∈N*).

    (3)由题设条件知

    S

    n

    n

    a

    n

    2

    =n(n−1)(n∈

    N

    *

    )

    .由此可知Tn=t1+t2+…+tn=

    3−

    2

    n+1

    2

    n+2

    <3(n∈

    N

    *

    )

    .从而求得数列{Tn}的上渐近值是3.

    (1)∵a1=a,a2=2,Sn=

    n(an+3a1)

    2(n∈N*),∴S1=

    a1+3a1

    2,a1=2a1,即a1=0.(2分)∴a=0.(3分)

    (2)由(1)可知,Sn=

    nan

    2,2Sn=nan(n∈N*).

    ∴2Sn-1=(n-1)an-1(n≥2).

    ∴2(Sn-Sn-1)=nan-(n-1)an-1,2an=nan-(n-1)an-1,(n-2)an=(n-1)an-1.(5分)

    an

    n−1=

    an−1

    n−2(n≥3,n∈N*).(6分)

    因此,

    an

    n−1=

    an−1

    n−2═

    a2

    1,an=2(n−1)(n≥2).(8分)

    又a1=0,∴数列{an}的通项公式an=2(n-1)(n∈N*).(10分)

    (3)由(2)有,Sn=

    nan

    2=n(n−1)(n∈N*).于是,tn=

    Sn+2

    Sn+1+

    Sn+1

    Sn+2−2

    =

    (n+2)(n+1)

    (n+1)n+

    (n+1)n

    (n+2)(n+1)−2

    =

    2

    n−

    2

    n+2(n∈N*).(12分)

    ∴Tn=t1+t2+…+tn

    =(

    2

    1−

    2

    3)+(

    2

    2−

    点评:

    本题考点: 数列递推式;极限及其运算;数列的求和.

    考点点评: 本题考查数列的综合运用,解题时要注意计算能力的培养.