一题:我理解原题是x+y=5且x^2+y^2=13,求x^3y+2x^2y^2+xy值
x+y=5………………(1)
x^2+y^2=13……(2)
由(1)^2-(2)得
2xy=5*5-13=12
得xy=6
则x^3y+2x^2y^2+xy
=x^2*xy+2(xy)^2+xy
=x^2*6+2*6*6+6
=6x^2+78
由(1)得y=-x+5
代入(2)得
x^2+(-x+5)^2=13
2x^2-10x+12=0
x^2-5x+6=0
x=2或x=3
所以当x=2时
6x^2+78=102
当x=3时
6x^2+78=132
答x^3y+2x^2y^2+xy值为102或132
二题x^2+2x+y^2-6y+10=0
x^2+2x+1+y^2-6y+9=0
(x+1)^2+(y-3)^2=0
(因为任何平方数大于等于零
两个平方数和等于零则每个平方数都等于零)
x+1=0
y-3=0
所以x=-1
y=3
三题:x(x-1)-(x^2-y)+2=0求:1/2(x^2+y^2)-xy值
x(x-1)-(x^2-y)+2=0
化简得x-y=2
1/2(x^2+y^2)-xy
=1/2(x^2+y^2-2xy)
=1/2(x-y)^2
=1/2*2*2
=2