三道因式分解的题目.已知x+y=5,x2+y2 =13,求xy+2xy+xy的值.已知x+2x+y-6y+10=0,求x

2个回答

  • 一题:我理解原题是x+y=5且x^2+y^2=13,求x^3y+2x^2y^2+xy值

    x+y=5………………(1)

    x^2+y^2=13……(2)

    由(1)^2-(2)得

    2xy=5*5-13=12

    得xy=6

    则x^3y+2x^2y^2+xy

    =x^2*xy+2(xy)^2+xy

    =x^2*6+2*6*6+6

    =6x^2+78

    由(1)得y=-x+5

    代入(2)得

    x^2+(-x+5)^2=13

    2x^2-10x+12=0

    x^2-5x+6=0

    x=2或x=3

    所以当x=2时

    6x^2+78=102

    当x=3时

    6x^2+78=132

    答x^3y+2x^2y^2+xy值为102或132

    二题x^2+2x+y^2-6y+10=0

    x^2+2x+1+y^2-6y+9=0

    (x+1)^2+(y-3)^2=0

    (因为任何平方数大于等于零

    两个平方数和等于零则每个平方数都等于零)

    x+1=0

    y-3=0

    所以x=-1

    y=3

    三题:x(x-1)-(x^2-y)+2=0求:1/2(x^2+y^2)-xy值

    x(x-1)-(x^2-y)+2=0

    化简得x-y=2

    1/2(x^2+y^2)-xy

    =1/2(x^2+y^2-2xy)

    =1/2(x-y)^2

    =1/2*2*2

    =2