已知一个圆锥的轴截面△ABC是等边三角形,它的表面积75πcm2,求这个圆锥的底面半径和母线的长.

4个回答

  • 解题思路:根据圆锥的母线即为扇形半径,圆锥底面圆的周长等于扇形弧长,假设底面半径为r,则圆锥的母线即为扇形半径为2r,利用圆锥表面积公式求出即可.

    设这个圆锥的底面半径为rcm,则母线的长为2rcm,

    利用表面积为75π的扇形,∵圆锥的母线即为扇形半径,圆锥底面圆的周长等于扇形弧长,

    ∴扇形面积+底面圆的面积=圆锥表面积.

    ∴[1/2]×2πr×2r+πr2=75π,

    解得:r=5,

    ∴2r=10.

    故这个圆锥的底面半径为5cm,母线的长为10cm.

    点评:

    本题考点: 圆锥的计算.

    考点点评: 此题主要考查了圆锥的面积公式以及扇形与圆锥各部分的对应情况,根据圆锥的母线即为扇形半径,圆锥底面圆的周长等于扇形弧长得出是解题关键.