4a-2b+c=0
2b=4a+c
令y=0,则:ax^2+bx+c=0
b^2-4ac
=(4a+c)^2/4-4ac
=4a^2+c^2/4+2ac-4ac
=4a^2-2ac+c^2/4
=4(16a^2-8ac+c^2)
=4(4a-c)^2≥0
所以,一定与x轴有两个交点
4a-2b+c=0
2b=4a+c
令y=0,则:ax^2+bx+c=0
b^2-4ac
=(4a+c)^2/4-4ac
=4a^2+c^2/4+2ac-4ac
=4a^2-2ac+c^2/4
=4(16a^2-8ac+c^2)
=4(4a-c)^2≥0
所以,一定与x轴有两个交点