设函数z=f(x,y)在点(0,0)可微,且f(0,0)=0,fx(0,0)=m,fy(0,0)=n,g(x)=f(x,
1个回答
g'(0)=fx(0,f(0,0))*(x)'+fy(0,f(0,0))*(fx(0,0)+fy(0,0))
=m+n*(m+n)
=m+(m+n)n
相关问题
设函数f(x,y)在(0,0)有意义,且fx(0,0)=3,fy(0,0)=-1,曲线z=f(x,y),y=0在(0,0
可微函数z=f(x,y)在点p0(x0,y0)取极值是fx'(x0,y0)=fy'(x0,y0)=0的什么条件?
函数z=f(x)有fx(x0,y0),fy(x0,y0)存在,则有f(x0,y0)存在.为什么
若fx(x0,y0),fy(x0,y0)存在,则函数f(x,y)在点(x0,y0)处()
函数fx在[-1,1]可微,f0=0,|f'x|<M,
设f(y,z)与g(y)都是可微函数,则曲线x=f(y,z),z=g(y)在点(x0,y0,z0)处的切线方程是x−x0
设函数f(x,y)在点(0,0)的某领域那有定义,且fx(0,0)=3,fy=(0,0)=-1(x,y是下标),则:()
设函数f(x)在x=0点可导,且f(0)=0,f‘(0)=1,则limx—0 f(x)/x=?
证明二元函数可微.设 lim [f(x,y)-f(0,0)+2x-y]/√x^2+y^2=0证明f(x,y)在点(0,0
设函数f(x)在点0可导,且f(0)=0,则lim(x→0)[f(x)/x]=