证明:
∵O是△ABC的内切圆的圆心
∴BO、CO分别平分∠ABC和∠ACB
∴∠OBC=1/2∠ABC,∠OCB=1/2∠ACB
∴∠OCB+∠OBC=1/2(∠ABC+∠ACB)=1/2(180°-∠A)=90-1/2∠A
∴∠BOC=180-(90-1/2∠A)=90°+1/2∠A
证明:
∵O是△ABC的内切圆的圆心
∴BO、CO分别平分∠ABC和∠ACB
∴∠OBC=1/2∠ABC,∠OCB=1/2∠ACB
∴∠OCB+∠OBC=1/2(∠ABC+∠ACB)=1/2(180°-∠A)=90-1/2∠A
∴∠BOC=180-(90-1/2∠A)=90°+1/2∠A