P(a,0)
|CD|=|CF|=1
y=(1/4)x^2+bx+c
x=0,|OA|=y=c
A(0,c),B(c,c),C(c,0),E(1+c,1),F(1+c,0)
r^2=PA^2=PB^2=PE^2
a=1,c=2
(1)
y=(1/4)x^2-(3/2)x+2
P(1,0),F(3,0),G(4,0),M(3.5,0),C(2,0),|CG|=2
(2)
k(PE)*k(ME)=-1
(3)
N(x,y),C(2,0),G(4,0)
k(NC)=y/(x-2),k(NG)=y/(x-4)
[k(NG)-k(NC)]/[1+k(NG)*k(NC)]≤1/√3
[y/(x-4)-y/(x-2)]/[1+y/(x-4)*y/(x-2)]≤1/√3
2y/(x^2-6x+8+y^2))≤1/√3
y=(1/4)x^2-(3/2)x+2=0.25x^2-1.5x+2
4y=x^2-6x+8
x^2-6x+8=(1/4)y=0.25y
2y/(x^2-6x+8+y^2)
=2y/(4y+y^2)
=2/(4+y)
=2/(4+0.25x^2-1.5x+2)
=8/(24+x^2-6x)
8/(24+x^2-6x))≤1/√3