由tan(π-a)=2可知tan a =-2,于是将式子的分子分母同除以cos^2a,则可得(tan^2a-tan a+3)/(2tan^2a-7)=(4+2+3)/(8-7)=9
tan(π-a)=2,求:(sin^2a-sinacosa+3cos^2a)/(2sin^2a-7cos^2a)
1个回答
相关问题
-
已知tan(π-a)=2求(1+2sinacosa)/(sin²a-cos²a)求 sin²
-
已知tan(π―a)=2,求(sin²a-2sinacosa-cos²a)÷(4cos²a
-
求证:sin^2A+cos^2A+sinAcosA/sin^2A+cos^2A=tan^2A+1+tanA/tan^2A
-
已知a∈(0,π/2),且sin^2a-sinacosa-2cos^2=0,求sin(a+π/4)/(sin2a+cos
-
化简sin(a+3π/2)sin(3π/2-a)tan^2(2π-a)tan(π-a)/cos(π/2-a)cos(π/
-
求证:【tan(2π-a)sin(-2aπ-a)cos(6π-a)】/【sin(a+3π/2)cos(a+3π/2)】=
-
6sin平方a+sinacosa-2cos平方a=0,a属于【π/2,π),求cot(-a-π)sin(2π+a)/co
-
tan(a-4π)cos(π+a)sin^2(a+3π)/tan(3π+a)cos^2(2/5π+2)=0.5,求tan
-
tan(π/4+a)=3,求sin2a-2cos2a
-
已知tan(a)=3,求sin^2(a)+2sin(a)cos(a)+3cos^2(a)/sin(a)cos(a)+co