解题思路:由已知条件,首先得出∠DAC=20°,再利用∠ABE=∠EBD,进而得出∠ABE+∠BAE=64°,求出∠EBD=26°,进而得出答案.
∵AD是△ABC的高,∠C=70°,
∴∠DAC=20°,
∵BE平分∠ABC交AD于E,
∴∠ABE=∠EBD,
∵∠BED=64°,
∴∠ABE+∠BAE=64°,
∴∠EBD+64°=90°,
∴∠EBD=26°,
∴∠BAE=38°,
∴∠BAC=∠BAE+∠CAD=38°+20°=58°.
点评:
本题考点: 三角形的外角性质;三角形内角和定理.
考点点评: 此题主要考查了三角形的外角与三角形内角和定理等知识,题目综合性较强,注意从已知条件得出所有结论是解决问题的关键.