证明:令y→0,则
f'(x)=lim[f(x+y)-f(x)]/y
=lim[f(x)f(y)-f(x)]/y
=f(x)*lim[f(y)-1]/y
=f(x)*lim[f(y)-f(0)]/(y-0)
=f(x)*f'(0)
=f(x)*1
=f(x)
证明:令y→0,则
f'(x)=lim[f(x+y)-f(x)]/y
=lim[f(x)f(y)-f(x)]/y
=f(x)*lim[f(y)-1]/y
=f(x)*lim[f(y)-f(0)]/(y-0)
=f(x)*f'(0)
=f(x)*1
=f(x)