余弦定理知:
c^2 = a^2 + b^2 - 2·a·b·cosC
37=9+16-2·3·4·cosC(设C为钝角)
cosC=-0.5→查三角函数值表得C=120°
另外:余弦定理证明如下:
在任意△ABC中做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,
DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB
b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac