解题思路:(1)利用等差数列的通项公式将第二项,第五项,第十四项用{an}的首项与公差表示,再据此三项成等比数列,列出方程,求出公差,利用等差数列及等比数列的通项公式求出数列{an}与{bn}的通项公式.
(2)再写一式,两式相减,求出数列的通项,即可求数列的和.
(3)利用错位相减法求和,利用Sn<168,建立不等式,从而可求满足条件Sn<168最大的正整数.
(1)∵a2=1+d,a5=1+4d,a14=1+13d
∴(1+4d)2=(1+d)(1+13d)
∵d>0
∴d=2
∴an=1+2(n-1)=2n-1
∴b2=a2=3,b3=a5=9,
故数列{bn}的公比是3,
∴bn=3•3n-2=3n-1
(2)由
c1
b1+
c2
b2+…+
cn
bn=an+1
得当n≥2时,
c1
b1+
c2
b2+…+
cn−1
bn−1=an
两式相减得
cn
bn=an+1-an=2,
∴cn=2bn=2×3n-1(n≥2)
n=1时,c1=3
∴c1+c2+…+c2011=3+2×3+2×32+…+2×32011=32011
(3)Sn=a1b1+a2b2+…+anbn=1+3×3+5×32+…+(2n-1)×3n-1①
∴3Sn=1×3+3×32+5×33+…+(2n-3)×3n-1+(2n-1)3n①
①-②得:-2Sn=-1+2(1+3+32+33+…+3n-1)-(2n-1)×3n
∴Sn=1+(n-1)3n
∵Sn是递增数列,且知S3=55,S4=244
∴满足Sn<168的最大正整数n=3.
点评:
本题考点: 等比数列的性质;数列的函数特性;等差数列的通项公式.
考点点评: 本题考查等差数列、等比数列的通项公式,考查数列的求和,考查学生的计算能力,属于中档题.