在△ABC,已知cos(A-B)+cosC=1-cos2C,且(a+b)(sinB-sinA)=asinB,试判断△AB

1个回答

  • ∵cosC=cos(-C)=-cos(180°-C)=-cos(A+B)

    cos2C=1-2sin^2(C)

    ∴cos(A-B)+cosC=1-cos2C可转换为cos(A-B)-cos(A+B)=2sin^2C

    ∵cos(A+B)=cosA·cosB-sinA·sinB

    cos(A-B)=cosA·cosB+sinA·sinβB

    所以cos(A-B)-cos(A+B)=2sin^2C即为sinAsinB=sin^2C

    由正弦定理得,ab=c^2

    同理(a+b)(sinB-sinA)=asinB即为(a+b)(b-a)=ab

    ∴b^2-a^2=ab

    又∵ab=c^2

    ∴b^2=a^2+c^2

    ∴△ABC为RT三角形

    明白了么?..只要吧三角恒等变换的公式记熟就好了啊~:)