不等边三角形ABC的两条高的长度分别为4和12,若第三条高的长度也是整数,那么这条高的长度等于______.

2个回答

  • 解题思路:根据三角形三边关系及三角形面积相等即可求出要求高的整数值.

    因为不等边三角形ABC的两条高的长度分别为4和12,根据面积相等可设 三角形ABC的两边长为3x,x;

    因为 3x×4=12×x(2倍的面积),面积S=6x,

    因为知道两条边的假设长度,根据两边之和大于第三边,两边之差小于第三边可得:2x<第三边长度<4x,

    因为要求高的最大长度,所以当第三边最短时,在第三边上的高就越长,

    S=第三边的长×高,6x>[1/2]×2x×高,∴6>高,

    因为是不等边三角形∴高取整数 5.

    故答案为:5.

    点评:

    本题考点: 三角形三边关系;三角形的面积.

    考点点评: 本题考查了三角形三边关系及三角形的面积,难度较大,关键是掌握三角形任意两边之和大于第三边,三角形的任意两边差小于第三边.