Q1) 令a=2x^3 - 3x^2 ,b=x + 1,c=3x^3 - x^2 ,d=5x - 13
则上式化简得(a+b)/(a-b)=(c+d)/(c-d)
(a+b)*(c-d)=(a-b)*(c+d)
bc-ad=ad-bc
bc=ad
即 (x + 1)(3x^3 - x^2)=(2x^3 - 3x^2)(5x - 13)
展开并化简得:7x^4-43x^3+40x^2=0
7x^2-43x+40=0
(x-5)(7x-8)=0
x=5或者8/7
Q2)令a=3x^4 ,b=x^2 - 2x - 3 ,c=5x^4,d=2x^2 - 7x +3
则上式化简得(a+b)/(a-b)=(c+d)/(c-d)
同Q1) bc=ad
即(x^2 - 2x - 3)*5x^4=3x^4 *(2x^2 - 7x +3)
展开并化简得:x^2-11x+24=0
(x-3)(x-8)=0
x=3或者8