设f(x)=kx+b
则f(1)=k*1+b=k+b
f(2)=k*2+b=2k+b
f(-1)=k*(-1)+b=-k+b
f(0)=k*0+b=b
2f(1)+3f(2)=3,2f(-1)-f(0)=-1
所以2(k+b)+3(2k+b)=3
8k+5b=3 (1)
2(-k+b)-b=-1
-2k+b=-1 (2)
(1)+(2)*4
8k+5b-8k+4b=3+(-1)*4
9b=-1
b=-1/9
k=(b+1)/2=4/9
f(x)=(4/9)x-1/9
设f(x)=kx+b
则f(1)=k*1+b=k+b
f(2)=k*2+b=2k+b
f(-1)=k*(-1)+b=-k+b
f(0)=k*0+b=b
2f(1)+3f(2)=3,2f(-1)-f(0)=-1
所以2(k+b)+3(2k+b)=3
8k+5b=3 (1)
2(-k+b)-b=-1
-2k+b=-1 (2)
(1)+(2)*4
8k+5b-8k+4b=3+(-1)*4
9b=-1
b=-1/9
k=(b+1)/2=4/9
f(x)=(4/9)x-1/9