K1a+k2Aa+…+kn An-1a=0,等式两边乘以An-1,得K1=0,然后乘以An-2得k2=0,…最后乘以1,得kn=0
设A是n级方阵,α是n维列向量,若αAn-1≠0,而αAn=0,试证明α,Aα,…,An-1α 线性无关.
2个回答
相关问题
-
高代题:设A是n级方阵,α是n维列向量,若A^n-1α≠0,而A^nα=0,试证明α,Aα,…,A^n-1α 线性无关
-
设α为n维列向量,α^Tα=1,方阵A=E-αα^T,试证|A|=0
-
A是n阶矩阵,α1,α2……αn是n维列向量,αn≠0,Aα1=α2,……,Aαn-1=αn,Aα
-
证明: 若n 维向量α1≠0,α2不能由α1线性表示,α3不能由α1,α2线性表示,则α1,α2,α3线性无关
-
设A是n阶矩阵,α1,α2,α3是n维非零向量,如果Aαi=iαi(i=1,2,3),证明α1,α2,α3线性无关.
-
若n阶矩阵A=[α1,α2,...,αn]的前n-1个列向量线性相关,后n-1个线性无关,β=α1+α2+.+αn,证明
-
若n阶矩阵A=[α1,α2,...,αn]的前n-1个列向量线性相关,后n-1个线性无关,β=α1+α2+.+αn,证明
-
α为n维列向量,A为m*n矩阵,α1,α2.αs线性无关,A的秩为n,那么(Aα1,Aα2.Aαs)无关吗
-
已知n维向量组α1 α2...αS(s≦n)线性无关,β是任意的n维向量,证明:向量组β,α1,α2...αS中
-
任一n维向量可以由n维向量组α1.α2.…αn线性表出.证明α1.α2.…α