(1),因为f(x)=(ax+b)/(1+x²)是 奇函数,所以
f(0)=b=0,
又f(1/2)=(a/2+b)/[1+(1/2)²]=(2a+4b)/5=2/5,
由b=0,得:a=1,
所以函数f(x)的解析式:f(x)=x/(1+x²).
(2),函数f(x)的定义域为:(-1,1),
在(-1,1)上,任取x1,x2,-1
(1),因为f(x)=(ax+b)/(1+x²)是 奇函数,所以
f(0)=b=0,
又f(1/2)=(a/2+b)/[1+(1/2)²]=(2a+4b)/5=2/5,
由b=0,得:a=1,
所以函数f(x)的解析式:f(x)=x/(1+x²).
(2),函数f(x)的定义域为:(-1,1),
在(-1,1)上,任取x1,x2,-1