(a+b+c)²
=a²+b²+c²+2ab+2bc+2ca
=1+2(ab+bc+ca)
≥0
得ab+bc+ca≥-1/2
2(a²+b²+c²)-(2ab+2bc+2ac)
=2-(2ab+2bc+2ac)
=(a-b)²+(b-c)²+(c-a)²
≥0
得ab+bc+ca≤1
综合得,-1/2≤ab+bc+ca≤1
(a+b+c)²
=a²+b²+c²+2ab+2bc+2ca
=1+2(ab+bc+ca)
≥0
得ab+bc+ca≥-1/2
2(a²+b²+c²)-(2ab+2bc+2ac)
=2-(2ab+2bc+2ac)
=(a-b)²+(b-c)²+(c-a)²
≥0
得ab+bc+ca≤1
综合得,-1/2≤ab+bc+ca≤1