对f(x)求导:f(x)'=3ax^2+3(a-1)x-3 (x≠0)
f(x)'>0为递增区间
3ax^2+3(a-1)x-3>0
→ ax^2+(a-1)x-1>0,(因式分解得)ax(x+1)-(x+1)>0
→(ax-1)(x+1)>0
→ax-1>0且x+1>0
ⅰ) a>0
x>1/a
ⅱ)-1< a
对f(x)求导:f(x)'=3ax^2+3(a-1)x-3 (x≠0)
f(x)'>0为递增区间
3ax^2+3(a-1)x-3>0
→ ax^2+(a-1)x-1>0,(因式分解得)ax(x+1)-(x+1)>0
→(ax-1)(x+1)>0
→ax-1>0且x+1>0
ⅰ) a>0
x>1/a
ⅱ)-1< a