能构成直角三角形
△ABC中角ACB=90°,CD⊥AB
则ab/2=ch/2(面积)
有h=ab/c
又直角三角形中
a^2+b^2=c^2
所以c=√(a^2+b^2)
h=ab/√(a^2+b^2)
构成三角形的条件是任意两边之和大于第三边
a+b+h-(c+h)=a+b-c>0(符合)
即a+b+h>c+h
a+b+c+h-h=a+b+c>0
即a+b+(c+h)>h(符合)
h+(c+h)-(a+b)
=2h+c-(a+b)
=2ab/√(a^2+b^2)+√(a^2+b^2)-(a+b)
=(2ab+a^2+b^2)/√(a^2+b^2)-(a+b)
=(a+b)^2/√(a^2+b^2)-(a+b)
=(a+b)[(a+b)/√(a^2+b^2)-1]
=(a+b)[√(a^2+b^2+2ab/√(a^2+b^2)-1]
所以√(a^2+b^2+2ab)/√(a^2+b^2)>1
即√(a^2+b^2+2ab)/√(a^2+b^2)-1>0
h+(c+h)-(a+b)>0
h+(c+h)>a+b
所以以a+b,h和c+h为边能构成三角形
(c+h^2
=c^2+2ch+h^2
=a^2+b^2+2c*(ab/c)+h^2
=a^2+b^2+2ab+h^2=
(a+b)^2+h^2
所以其为直角三角形,c+h为斜边