设lim((x^2+1)/(x+1) -ax-b)=0,求a,b.x趋向无穷大
2个回答
lim[(x^2+1)/(x+1) -ax-b]
=lim[(x+1)-2x/(x+1)-ax-b]
=lim[(1-a)x-(1+b)]
=0
1-a=0 a=1
1+b=0 b=-1
相关问题
设lim((x^2+1)/(x+1) -ax-b)=0,求a,b.x趋向无穷大
设lim(x->无穷大)((1+x^2+x^3)^1/3-ax-b)=0,求a= ,b= .
lim(x趋于无穷大)(x^2+1/x+1 -ax-b)=0求a b
lim(x3+1/x2+1)-ax-b=1,x趋向无穷,求常数a,b
lim根号下(x^2-x+1) -ax-b =0 x趋向于正无穷求a,b
若lim (x趋向0)f(ax)/x =1/2,则lim(x趋向0)f(bx)/x (ab≠0),答案是b/2a,求大侠
lim x趋向于0求((a^x+b^x)/2)^(1/x)
lim{[(x^2)+1]/[x+1]}-(ax+b)=0,求,a,x→∞
已知:lim(x趋向于正无穷)(3x-(ax^2-x+1)^1/2)=b,求常数a,b
微积分求极限:lim(x趋向于无穷大)(1-2/x)^(-1)