(1)∠DAF与∠ABD相等
∵∠BAC=90° AE⊥BD
∴∠ABD+∠ADB=90° ∠DAF+∠ADF=90°
∵∠ADB=∠ADF
∴∠DAF=∠ABD
(2)∵∠BAC=90° ∠C=45°
∴△ABC是等腰RT△
∵AM⊥BC于M交BD于点N
∴AM=BM ∠ABM=∠BAM=45°
∴∠BAM=∠C=45°
∵由上题可知∠DAF=∠ABD
AB=AC
∠BAM=∠C
∴△BNA≌△AEC(ASA)
(3)∠CDE≠∠ADN
∵△BNA≌△AEC
∴AD=CE
∵D为AC的中点 ∠BAC=90°
∴AD=DC AD=1/2AB
∴CE=DC ∠ADN=∠ADB=2∠ABD=60°
∴△CDE是等腰△
∵∠C=45°
∴∠DCE=∠DEC=1/2(180°-∠C)=1/2(180°-45°)=67.5°
∴∠CDE≠∠ADN