(Ⅰ)依题意,有
S5=70
a72=a2a22,即
5a1+10d=70
(a1+6d)2=(a1+d)(a1+21d)
解得a1=6,d=4,
∴数列{an}的通项公式为an=4n+2(n∈N*).
(Ⅱ)证明:由(Ⅰ)可得Sn=2n2+4n,
∴
an+6
(n+1)Sn=
4n+2+6
(n+1)(2n2+4n)=
4(n+2)
2n(n+1)(n+2)=
2
n(n+1),
∴Tn=2[(1?
1
2)+(
1
2?
1
3)+…+(
1
n?
1
n+1)]=2(1?
1
n+1),
∵{
1
n+1}是递减数列,且n∈N*,
∴0<
1
n+1≤
1
2.∴?