f(x)=cos(2x+pi/3)+sin^2(x)
=1/2*cos2x-√3/2*sin2x+sin^2(x)
=1/2*(2*cos^2(x)-1)-√3/2*sin2x+sin^2(x)
=cos^2(x)-1/2-√3/2*sin2x+sin^2(x)
=1/2-√3/2*sin2x
易知,值域(1/2-√3/2,1/2+√3/2),周期为pi
f(x)=cos(2x+pi/3)+sin^2(x)
=1/2*cos2x-√3/2*sin2x+sin^2(x)
=1/2*(2*cos^2(x)-1)-√3/2*sin2x+sin^2(x)
=cos^2(x)-1/2-√3/2*sin2x+sin^2(x)
=1/2-√3/2*sin2x
易知,值域(1/2-√3/2,1/2+√3/2),周期为pi