用罗尔定理、拉格朗日定理求.在用罗尔定理求之前,只要说明f(x)在[0,a] 可导,在(0,a)连续就可以了,很简单的套用定理
7.设f(x)在[0,2a] 上连续,f(0)=f(2a) ,证明方程f(x)=f(x+a) 在(0,a) 内至少有一个
1个回答
相关问题
-
一道函数连续的证明题f(x)在[0,2a]上连续,f(0)=f(2a).证明 f(x)=f(x+1) 在[0,a]上至少
-
设f(x)在[0,2]上连续,f(0)=f(2),证明方程f(x)=f(x+1)在[0,1]上至少有一个实根
-
函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明;在[0,a]上至少存在一点使得f(x)=f(x+a)
-
问一个积分证明题设f(x)在[0,a]上连续(a>0),证明:∫(0,a)dx∫(0,x)f(x)f(y)dy=(1/2
-
设f(x)在区间[a,b]上连续,且在(a,b)内有f''(x)>0,证明[f(x)-f(a)]/(x-a)在区间(a,
-
设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a
-
设f(x)在[a,b]上连续,在(a,b)内可导且f′(x)≤0,并有 证明:在(a,b)内有F'(x)≤0
-
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +
-
设函数f(x)在【0,a】上连续,在(0,a)内可导,且f(0)=0,f’(x)单调增加,令g(x)=f(x)/x.证明
-
设函数 f(x)在[0,2a]上连续,且 f(0) = f(2a),证明:存在Z属于[0,a),使得 f(Z) = f(