因为S2n=2n(a1+a2n)/2=n[2a1+(2n-1)d] ,Sn=n(a1+an)/2=n[2a1+(n-1)d]/2
又S2n/Sn=4n+2/n+1,所以[2+(2n-1)d]/[2+(n-1)d]=(2n+1)/(n+1)对任意正整数n都成立,解得d=1,于是An=n,Bn=np^n,
(1)当p=1时,Bn前n项和为Tn=n(n+1)/2
(2)当p≠1时 ,B1=p^1,B2=2p^2 ,B3=3p^3 ,……,Bn=np^n ,相加得:
Tn=p^1+2p^2 +3p^3 +…+np^n,乘以p得:pTn=p^2+2p^3 +3p^4 +…+np^(n+1)
错位相减得:(1-p)Tn=p^1+p^2 +p^3 +…+p^n-np^(n+1)
=p(1-p^n)/(1-p)-np^(n+1)
所以Tn=p(1-p^n)/(1-p)^2-np^(n+1)/(1-p)