设经过时间t之后,PBQ=0.5*ABC
有三角形面积公式 S=0.5*AB*BC*sinB
因此 当 PB*BQ=0.5*AB*BC时
PBQ=0.5*ABC
即(BA-PA)*(BC-CQ)=0.5*BA*BC
(BA-4*t)*(BC-2*t)=0.5*BA*BC
(24-4*t)*(16-2*t)=0.5*24*16
即t^2-14*t+24=0
(t-2)*(t-12)=0
t=2 或 t=12(删除)
故 t=2
此时 BP=16 BQ=12
PQ^2=BP^2+BQ^2-2*BP*BQ*cos60
PQ=4根号13